skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guner, Kemal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile data traffic will exceed PC Internet traffic by 2020. As the number of smartphone users and the amount of data transferred per smartphone grow exponentially, limited battery power is becoming an increasingly critical problem for mobile devices which depend on the network I/O. Despite the growing body of research in power management techniques for the mobile devices at the hardware layer as well as the lower layers of the networking stack, there has been little work focusing on saving energy at the application layer for the mobile systems during network I/O. In this paper, we propose a novel technique, called FastHLA, that can achieve significant energy savings at the application layer during mobile network I/O without sacrificing the performance. FastHLA is based on historical log analysis and real-time dynamic tuning of mobile data transfers to achieve the optimization goal. FastHLA can increase the data transfer throughout by up to 10X and decrease the energy consumption by up to 5X compared to state-of-the-art HTTP/2.0 transfers. 
    more » « less
  2. Fast, reliable, and efficient data transfer across wide-area networks is a predominant bottleneck for dataintensive cloud applications. This paper introduces OneDataShare, which is designed to eliminate the issues plaguing effective cloud-based data transfers of varying file sizes and across incompatible transfer end-points. The vision of OneDataShare is to achieve high-speed data transfer, interoperability between multiple transfer protocols, and accurate estimation of delivery time for advance planning, thereby maximizing user-profit through improved and faster data analysis for business intelligence. The paper elaborates on the desirable features of OneDataShare as a cloud-hosted data transfer scheduling and optimization service, and how it is aligned with the vision of harnessing the power of the cloud and distributed computing. Experimental evaluation and comparison with existing real-life file transfer services show that the transfer throughout achieved by OneDataShare is up to 6.5 times greater compared to other approaches. 
    more » « less
  3. The amount of data moved over dedicated and non-dedicated network links increases much faster than the increase in the network capacity, but the current solutions fail to guarantee even the promised achievable transfer throughputs. In this paper, we propose a novel dynamic throughput optimization model based on mathematical modeling with offline knowledge discovery/analysis and adaptive online decision making. In offline analysis, we mine historical transfer logs to perform knowledge discovery about the transfer characteristics. Online phase uses the discovered knowledge from the offline analysis along with real-time investigation of the network condition to optimize the protocol parameters. As real-time investigation is expensive and provides partial knowledge about the current network status, our model uses historical knowledge about the network and data to reduce the real-time investigation overhead while ensuring near optimal throughput for each transfer. Our novel approach is tested over different networks with different datasets and outperformed its closest competitor by 1.7× and the default case by 5×. It also achieved up to 93% accuracy compared with the optimal achievable throughput possible on those networks. 
    more » « less